2025
Noncoding variants and sulcal patterns in congenital heart disease: Machine learning to predict functional impact
Mondragon-Estrada E, Newburger J, DePalma S, Brueckner M, Cleveland J, Chung W, Gelb B, Goldmuntz E, Hagler D, Huang H, McQuillen P, Miller T, Panigrahy A, Porter G, Roberts A, Rollins C, Russell M, Tristani-Firouzi M, Grant P, Im K, Morton S. Noncoding variants and sulcal patterns in congenital heart disease: Machine learning to predict functional impact. IScience 2025, 28: 111707. DOI: 10.1016/j.isci.2024.111707.Peer-Reviewed Original ResearchNoncoding variantsCongenital heart diseaseFunctions related to neuronal developmentGene regulatory signalsH3K9me2 modificationRegulatory signalsCongenital heart disease cohortsDevelopmental pathwaysNeuronal developmentFolding patternHeart diseaseFunctional impactGenetic factorsGenesVariantsBrain developmentPredictive impactSulcal patterns
1991
Establishment of Left‐Right Asymmetry in Vertebrates: Genetically Distinct Steps are Involved
Brueckner M, McGrath J, D'Eustachio P, Horwich A. Establishment of Left‐Right Asymmetry in Vertebrates: Genetically Distinct Steps are Involved. Novartis Foundation Symposia 1991, 162: 202-218. PMID: 1802643, DOI: 10.1002/9780470514160.ch12.Peer-Reviewed Original ResearchConceptsRestriction fragment length polymorphism (RFLP) markersFragment length polymorphism (AFLP) markersMouse chromosome 12Length polymorphism markersTiming of expressionLeft-right determinationLeft-right axisLeft-right asymmetryPositional cloningPolymorphism markersRecessive allelesGene productsPattern of inheritanceChromosome 12Developmental pathwaysLinkage analysisCardiac tubeFunction mutationsGenesMolecular analysisDevelopmental stepsFirst organAffected embryosVertebratesDistinct phenotypes
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply