2020
Signaling Diversity Enabled by Rap1 and cAMP/PKA‐Regulated Plasma Membrane ERK with Distinct Temporal Dynamics
Keyes J, Ganesan A, Molinar-Inglis O, Hamidzadeh A, Ling M, Trejo J, Levchenko A, Zhang J. Signaling Diversity Enabled by Rap1 and cAMP/PKA‐Regulated Plasma Membrane ERK with Distinct Temporal Dynamics. The FASEB Journal 2020, 34: 1-1. DOI: 10.1096/fasebj.2020.34.s1.00680.Peer-Reviewed Original ResearchERK activityTemporal regulationPrecise temporal regulationMembrane protrusion dynamicsSequence-specific motifsSpecific subcellular locationsControl cell morphologyDifferent subcellular compartmentsMultiple cellular processesERK enzymatic activityCAMP/PKAERK biosensorEGF inducesKinase cascadeCellular processesExtracellular signalsSubcellular compartmentsSubcellular locationProtrusion dynamicsSubcellular regionsPlasma membraneSpecific motifsEnzymatic activityCell morphologyRap1
2000
Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties
Levchenko A, Bruck J, Sternberg P. Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 5818-5823. PMID: 10823939, PMCID: PMC18517, DOI: 10.1073/pnas.97.11.5818.Peer-Reviewed Original ResearchConceptsMitogen-activated protein kinaseScaffold proteinProtein kinaseSpecific cellular contextDifferent subcellular compartmentsDetailed biochemical modelCellular contextSignal transductionSubcellular compartmentsScaffold concentrationsScaffold levelMultimolecular complexesFull activationGeneric scaffoldKinaseProteinBiochemical modelPathwaySignal propagationTransductionComplexesQuantitative computer modelCrosstalkCompartmentsActivation
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply