A framework for understanding selection bias in real-world healthcare data
Kundu R, Shi X, Morrison J, Barrett J, Mukherjee B. A framework for understanding selection bias in real-world healthcare data. Journal Of The Royal Statistical Society Series A (Statistics In Society) 2024, 187: 606-635. PMID: 39281782, PMCID: PMC11393555, DOI: 10.1093/jrsssa/qnae039.Peer-Reviewed Original ResearchElectronic health recordsSelection biasAssociation of cancerMultiple sources of biasHealth recordsHealthcare systemSources of biasReal-world healthcare dataBinary outcomesEstimation of associated parametersHealthcare dataReal-world dataPotential biasSample sizeStandard errorData exampleVariance formulaAnalysis of real-world dataAssociationSimulation studyWeighting approachBiological sexAssociated parametersBiasMultiple sourcesSet-Based Tests for the Gene–Environment Interaction in Longitudinal Studies
He Z, Zhang M, Lee S, Smith J, Kardia S, Roux V, Mukherjee B. Set-Based Tests for the Gene–Environment Interaction in Longitudinal Studies. Journal Of The American Statistical Association 2017, 112: 966-978. PMID: 29780190, PMCID: PMC5954413, DOI: 10.1080/01621459.2016.1252266.Peer-Reviewed Original ResearchGene-environment interactionsMulti-Ethnic Study of AtherosclerosisSet-based testMeasures of neighborhood environmentMarginal genetic associationsEnvironmental exposuresMulti-Ethnic StudyStudy of AtherosclerosisNeighborhood environmentMeasurement of blood pressureGene-environmentMain-effects modelScore type testsMethod of sievesLongitudinal measures of blood pressureRobust to misspecificationGenetic associationGenetic variantsLongitudinal studyMain effectStudy periodEffects modelContinuous environmental exposurePotential biasIndependent conditions
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply