2024
Vascular endothelial cells derived from transgene-free pig induced pluripotent stem cells for vascular tissue engineering
Batty L, Park J, Qin L, Riaz M, Lin Y, Xu Z, Gao X, Li X, Lopez C, Zhang W, Hoareau M, Fallon M, Huang Y, Luo H, Luo J, Ménoret S, Li P, Jiang Z, Smith P, Sachs D, Tellides G, Anegon I, Pober J, Liu P, Qyang Y. Vascular endothelial cells derived from transgene-free pig induced pluripotent stem cells for vascular tissue engineering. Acta Biomaterialia 2024, 193: 171-184. PMID: 39681154, DOI: 10.1016/j.actbio.2024.12.033.Peer-Reviewed Original ResearchThis study created transgene-free pig induced pluripotent stem cells for engineered blood vessels that prevent clots, opening new possibilities for modeling improved cardiovascular treatments.
2021
Methods for Differentiating hiPSCs into Vascular Smooth Muscle Cells
Li ML, Luo J, Ellis MW, Riaz M, Ajaj Y, Qyang Y. Methods for Differentiating hiPSCs into Vascular Smooth Muscle Cells. Methods In Molecular Biology 2021, 2375: 21-34. PMID: 34591296, DOI: 10.1007/978-1-0716-1708-3_3.Peer-Reviewed Original ResearchConceptsHuman induced pluripotent stem cellsVascular smooth muscle cellsPluripotent stem cellsLateral plate mesodermEarly embryonic developmentStem cellsSmooth muscle cellsHuman pluripotent stem cellsInduced pluripotent stem cellsExtracellular matrix proteinsMuscle cellsMesoderm lineagePlate mesodermEmbryonic developmentVascular cell sourceEmbryoid bodiesEB formationMatrix proteinsCellular interactionsDisease modelingPhysiological characteristicsVascular tissueTissue-engineered vascular graftsCell-based therapiesCell replacement
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply