2024
A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data
Bi Y, Abrol A, Fu Z, Calhoun V. A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data. Human Brain Mapping 2024, 45: e26783. PMID: 39600159, PMCID: PMC11599617, DOI: 10.1002/hbm.26783.Peer-Reviewed Original ResearchConceptsCross-attention mechanismVision transformerDeep learning modelsBrain disordersCharacteristics of schizophreniaDiagnosis of schizophreniaStructural neuroimaging dataNetwork connectivity matrixData fusion approachAttention mapsMultimodal baselinesFunctional network connectivityFuse informationDeep learningICA algorithmFusion approachGrey matter mapsAI algorithmsFunctional network connectivity matricesLeverage multiple sources of informationGray matter imagesLearning modelsMultiple sources of informationBrain imaging modalitiesNetwork connectivityCommon and unique brain aging patterns between females and males quantified by large‐scale deep learning
Du Y, Yuan Z, Sui J, Calhoun V. Common and unique brain aging patterns between females and males quantified by large‐scale deep learning. Human Brain Mapping 2024, 45: e70005. PMID: 39225381, PMCID: PMC11369911, DOI: 10.1002/hbm.70005.Peer-Reviewed Original ResearchConceptsBrain functional changesFunctional connectivityCognitive controlBrain agingBrain functionPatterns of brain agingResting-state brain functional connectivityBrain functional interactionsBrain functional connectivityHuman brain functionBrain aging patternsGender commonalitiesAge-related changesDeep learningHealthy participantsNormal agingNegative connectionFunctional changesBrainPositive connectionDeep learning modelsFunctional domainsAge effectsFunctional interactionsCross-validation schemeIdentifying EEG Biomarkers of Depression with Novel Explainable Deep Learning Architectures
Ellis C, Sancho M, Miller R, Calhoun V. Identifying EEG Biomarkers of Depression with Novel Explainable Deep Learning Architectures. Communications In Computer And Information Science 2024, 2156: 102-124. DOI: 10.1007/978-3-031-63803-9_6.Peer-Reviewed Original ResearchDeep learning modelsExplainability methodsExplainability analysisConvolutional neural network architectureLearning modelsRaw electroencephalogramNeural network architectureDeep learning architectureMajor depressive disorderLearning architectureNetwork architectureDeep learningModel architectureMultichannel electroencephalogramTraining approachArchitectureBiomarkers of depressionFrequency bandElectroencephalogramResearch contextDepressive disorderElectroencephalogram biomarkerAccuracyRight hemisphereExplainabilityExploring Schizophrenia Classification in fMRI Data: A Common Spatial Patterns(CSP) Approach for Enhanced Feature Extraction and Classification
Esfahani M, Miller R, Calhoun V. Exploring Schizophrenia Classification in fMRI Data: A Common Spatial Patterns(CSP) Approach for Enhanced Feature Extraction and Classification. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-4. PMID: 40040201, DOI: 10.1109/embc53108.2024.10782387.Peer-Reviewed Original ResearchConceptsImplementation of deep learning modelsNetwork connectivityUnsupervised dimensionality reduction techniquesTime-varying network connectivityEnhanced feature extractionDimensionality reduction techniquesDeep learning modelsMotor imagery tasksFeature extractionElectroencephalogram signalsTransformation of signalsEEG signalsPrincipal component analysisLearning modelsData typesCSP methodApplication of CSPSchizophrenia classificationFMRI datasetsReduction techniquesImagery tasksDatasetCSPDataClassificationLabel Noise-Robust Ensemble Deep Multimodal Framework For Neuroimaging Data
Rokham H, Falakshahi H, Calhoun V. Label Noise-Robust Ensemble Deep Multimodal Framework For Neuroimaging Data. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2024, 00: 1-4. PMID: 40039505, DOI: 10.1109/embc53108.2024.10782672.Peer-Reviewed Original ResearchConceptsLabel noiseEffects of label noiseBrain-based markersSelf-report assessmentsLabel noise problemFunctional MRI dataDeep convolutional frameworkDeep learning modelsK-fold cross-validation techniqueAssessment of diagnosisNosological categoriesCross-validation techniqueNeuroimaging dataMental illnessClassification performanceConvolutional frameworkDiagnostic categoriesDiagnostic classificationEnsemble methodsMultimodal frameworkLearning modelsSubsets of dataBagging approachK-foldNeuroimagingCross-Sampling Rate Transfer Learning for Enhanced Raw EEG Deep Learning Classifier Performance in Major Depressive Disorder Diagnosis
Ellis C, Miller R, Calhoun V. Cross-Sampling Rate Transfer Learning for Enhanced Raw EEG Deep Learning Classifier Performance in Major Depressive Disorder Diagnosis. 2024, 00: 1-5. DOI: 10.1109/isbi56570.2024.10635743.Peer-Reviewed Original ResearchTransfer learningDeep learning classifier’s performanceEarly convolutional layersConvolutional neural networkDeep learning modelsDeep learning studiesConvolutional layersClassifier performanceDiagnosis tasksExplainability analysisNeural networkSleep datasetsRaw electroencephalographyLearning modelsIncreased robustnessDatasetChannel lossSampling rateModel accuracyMDD modelLearningRepresentationTaskLearning studiesElectroencephalographyExplainable Multimodal Graph Isomorphism Network for Interpreting Sex Differences in Adolescent Neurodevelopment
Patel B, Orlichenko A, Patel A, Qu G, Wilson T, Stephen J, Calhoun V, Wang Y. Explainable Multimodal Graph Isomorphism Network for Interpreting Sex Differences in Adolescent Neurodevelopment. Applied Sciences 2024, 14: 4144. DOI: 10.3390/app14104144.Peer-Reviewed Original ResearchFunctional magnetic resonance imagingBlood oxygen level-dependentGraph isomorphism networkGraph neural networksBrain networksFunctional magnetic resonance imaging paradigmFunctional magnetic resonance imaging blood oxygen level-dependentSex differencesClassification accuracyExploration of sex differencesInterpreting sex differencesOxygen level-dependentState-of-the-art algorithmsAdolescent neurodevelopmentState-of-the-artNeuropsychiatric conditionsFunctional connectivityTask-related dataDeep learning modelsLevel-dependentMouth movementsFMRI datasetsFunctional networksGraph structureAdolescentsImproving Age Prediction: Utilizing LSTM-Based Dynamic Forecasting For Data Augmentation in Multivariate Time Series Analysis
Gao Y, Ellis C, Calhoun V, Miller R. Improving Age Prediction: Utilizing LSTM-Based Dynamic Forecasting For Data Augmentation in Multivariate Time Series Analysis. 2024, 00: 125-128. DOI: 10.1109/ssiai59505.2024.10508611.Peer-Reviewed Original ResearchLong short-term memoryDeep learning modelsData augmentationPerformance deep learning modelsLearning modelsMultivariate time series dataAge prediction taskShort-term memoryPrediction taskAugmented datasetDynamical forecastsComponent networksMultivariate time series analysisDatasetNeuroimaging datasetsRobust solutionTime series dataOriginal dataValidation frameworkTime series analysisSeries dataNetworkNeuroimaging fieldDataModel performance
2023
Improving Multichannel Raw Electroencephalography-based Diagnosis of Major Depressive Disorder via Transfer Learning with Single Channel Sleep Stage Data*
Ellis C, Sattiraju A, Miller R, Calhoun V. Improving Multichannel Raw Electroencephalography-based Diagnosis of Major Depressive Disorder via Transfer Learning with Single Channel Sleep Stage Data*. 2023, 00: 2466-2473. DOI: 10.1109/bibm58861.2023.10385424.Peer-Reviewed Original ResearchDeep learning methodsLearning methodsTransfer learningEEG datasetManually engineered featuresTransfer learning approachDeep learning modelsDeep learning performanceMachine learning methodsClassification datasetsLearned representationsElectroencephalography classifierDeep learningEEG classificationResting-state electroencephalographyDiagnosis of major depressive disorderRaw electroencephalographyLearning approachLearning modelsMajor depressive disorder diagnosisMajor depressive disorderLearning performanceClassifierDatasetEngineering featuresAn Explainable and Robust Deep Learning Approach for Automated Electroencephalography-Based Schizophrenia Diagnosis
Sattiraju A, Ellis C, Miller R, Calhoun V. An Explainable and Robust Deep Learning Approach for Automated Electroencephalography-Based Schizophrenia Diagnosis. 2023, 00: 255-259. DOI: 10.1109/bibe60311.2023.00048.Peer-Reviewed Original ResearchConvolutional neural networkRobust deep learning approachBaseline convolutional neural networkChannel lossDeep learning methodsDeep learning modelsDeep learning approachDecision support roleExplainability approachesClassifier performanceRobust modelNeural networkExplainable modelsLearning methodsLearning approachLearning modelsAutomated diagnosisImplementation environmentEEG dataDiagnosis of SZExplainabilityRaw EEGTest dataRobustnessBiomarkers of SZPairing explainable deep learning classification with clustering to uncover effects of schizophrenia upon whole brain functional network connectivity dynamics
Ellis C, Miller R, Calhoun V. Pairing explainable deep learning classification with clustering to uncover effects of schizophrenia upon whole brain functional network connectivity dynamics. Neuroimage Reports 2023, 3: 100186. DOI: 10.1016/j.ynirp.2023.100186.Peer-Reviewed Original ResearchEffect of schizophreniaDynamic functional network connectivityBrain network dynamicsNeuropsychiatric disordersBrain activityFunctional magnetic resonance imagingInteractions of brain regionsFunctional network connectivityNetwork dynamicsBrain regionsSchizophreniaClustering algorithmEffect of SZHealthy controlsLearning classificationBrainMagnetic resonance imagingDeep learning modelsDeep learning classificationDisordersNetwork interactionsMachine learning classificationResonance imagingClustersNovel measures
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply