Identifying clinically applicable machine learning algorithms for glioma segmentation: recent advances and discoveries
Tillmanns N, Lum AE, Cassinelli G, Merkaj S, Verma T, Zeevi T, Staib L, Subramanian H, Bahar RC, Brim W, Lost J, Jekel L, Brackett A, Payabvash S, Ikuta I, Lin M, Bousabarah K, Johnson MH, Cui J, Malhotra A, Omuro A, Turowski B, Aboian MS. Identifying clinically applicable machine learning algorithms for glioma segmentation: recent advances and discoveries. Neuro-Oncology Advances 2022, 4: vdac093. PMID: 36071926, PMCID: PMC9446682, DOI: 10.1093/noajnl/vdac093.Peer-Reviewed Original ResearchGlioma segmentationResearch algorithmSegmentation of gliomasHigh accuracy resultsML algorithmsApplicable machineAccuracy resultsTCIA datasetSegmentationAlgorithmMachinePatient dataSystematic literature reviewOverfittingData extractionDatasetBratDatabaseRecent advancesResearch literatureLimitationsExtractionCurrent research literatureMethod
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply